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A general class of iterative projection algorithms is described and proposed as a

tool for phasing in protein crystallography in order to improve the radius of

convergence over that of conventional density-modification algorithms. Their

relationship to conventional density modification is described. The common

iterative projection algorithms, their convergence properties and their applica-

tion to protein crystallography are described. These algorithms offer the

possibility of protein structure determination starting with only information on

the molecular envelope and low-order non-crystallographic symmetry.

1. Introduction

Despite the enormous advances in protein crystallography,

determination of the structures of large and complex macro-

molecules from crystal X-ray diffraction data can sometimes

be problematic as a result of the experimental difficulties of

obtaining sufficiently accurate initial phases. Initial phase

information is typically obtained using molecular replacement,

isomorphous replacement, single- or multiple-wavelength

anomalous dispersion, electron microscopy, or a combination

of these (Drenth, 1999). These techniques require either a

solved structure that is sufficiently homologous to the target

molecule, preparation of isomorphous heavy-atom derivatives

that diffract to sufficient resolution, or incorporation of

anomalous scatterers into the native protein and collection of

sufficiently accurate anomalous-dispersion signals. The initial

phase information is sometimes obtained only at low resolu-

tion and phase extension may be required to obtain a high-

resolution map suitable for model building. Although these

techniques are often successful, sometimes the experimental

phases may be of insufficient quality to ultimately produce an

interpretable high-resolution map. Therefore, despite the

power of modern methods for macromolecular crystal-

lography, numerical algorithms that are able to converge to

the correct electron density with less, or no, experimental

phase information would be useful.

Quite early on, using structural redundancy for phase

determination by what has evolved into modern density-

modification algorithms was identified as the application of

successive projections (Crowther, 1969; Bricogne, 1974). The

objective of this paper is to introduce a wider class of iterative

projection algorithms that have better global convergence,

and describe their potential application in protein crystal-

lography. Application to the determination of protein struc-

tures will be described in a subsequent paper.

The paper is structured as follows. The important question

of uniqueness of the solution in the absence of phase infor-

mation is addressed in x2. In x3 some background to the

approach we propose is described in the context of current

methods of density modification. The concepts of constraint

sets and projections are described in x4. In x5 a number of the

more effective iterative projection algorithms and their

properties are described. A summary and possible implica-

tions of this work are discussed in the final section.

2. Uniqueness

It is important when contemplating structure determination

with minimal initial phase information to first consider

whether the given data and constraints are sufficient to

provide a unique solution. If they do not, then there is little

point in pursuing algorithms for structure determination since

an effective algorithm may find one of a multitude of incorrect

solutions. We consider here the effect of a known molecular

envelope (solvent boundary) and non-crystallographic

symmetry (NCS) on uniqueness of the phase problem in

protein crystallography.

Crowther (1969) and Bricogne (1974) considered this

question and showed that there is redundancy in the structure

amplitude data that is determined by the ratio of the number

of observations and the number of free parameters in the

subunit from which the electron density is built. Millane

(1993) studied uniqueness properties for macromolecular

crystallography that considered the shape of the support

region (molecular envelope) and the order of the NCS, and

gave a parameter that could be related to uniqueness of the

solution (although interpretation of this factor was out by a

factor two). The results of Miao et al. (1998) indicated that, at

least for rectangular supports, the Fourier amplitudes at the

Bragg density underdetermines the phase problem by a factor

of two. Elser & Millane (2008) considered uniqueness of the

phase problem for continuous diffraction data from isolated

molecules. They defined the ‘constraint ratio’, denoted �,

as the ratio of the number of independent data (diffraction
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amplitudes) divided by the number of independent object

(electron density) parameters. Note that although the

diffraction is continuous in this case, as a result of the sampling

theorem it contains only a finite number of independent data.

They also showed that the number of independent data

depends on the size (volume) of the autocorrelation of the

molecular support region. The constraint ratio is then given by

� ¼ jAj = 2jUj; ð1Þ

where jUj is the volume of the object (molecule) support U

(i.e. the region occupied by the molecule) and jAj is the

volume of the autocorrelation support A of U. The constraint

ratio therefore depends only on the shape of the molecular

support region (from which jUj and jAj can be calculated). A

unique solution requires �> 1. In practice, an additional

margin will be required to account for noise in the data. In

three dimensions, for support regions that are convex and

centrosymmetric (approximately true for most macro-

molecular envelopes), � = 4. The problem is therefore highly

overconstrained for continuous (non-crystalline) diffraction

data. This analysis can be adapted to the case of crystal

diffraction data as follows.

For the crystalline case, the object is periodic and a similar

analysis needs to consider the support of the molecules

forming the whole crystal and its autocorrelation, i.e. the

Patterson function. Because of overlap of the autocorrelations

in the Patterson function, the support jAj in equation (1) is

replaced by V, the volume of the unit cell. Furthermore, the

number of independent diffraction data and the number of

electron-density parameters are both reduced by a factor

equal to the order of the space group. For crystal diffraction

data then, equation (1) reduces to � = 1=ð2f Þ, where f =

jUj=V is the fraction of the unit cell occupied by the molecular

envelope(s). Therefore, unless the unit cell contains more than

50% solvent (i.e. f < 1/2), � < 1, and the phase problem for

crystal diffraction data is highly non-unique. If the molecule

has R-fold NCS then the number of object parameters is

reduced by a factor R and

� ¼ R = 2f : ð2Þ

One can come to the same conclusion by considering the

equations of Crowther (1969) and Bricogne (1974). The

problem is more constrained in the presence of other real-

space information such as the characteristics of typical

macromolecular electron densities. The difficulty is incorpor-

ating such information into a solution to the problem,

although the use of pattern matching in statistical density

modification is an effective approach (Terwilliger, 2003).

In theory we require only that � > 1 for uniqueness, but in

practice the effects of noise, missing data and other uncer-

tainties will require a somewhat larger value. The recent

results of Liu et al. (2012) for phasing based on the molecular

envelope only give some guidance as to the values of � that

might be required in practice (although of course this will vary

significantly depending on various factors such as the resolu-

tion and errors in the data in particular cases). Their results

indicate that, at least for reasonably high-resolution (2 Å)

data, a solvent content greater than about 65% (i.e. f < 0.35)

is necessary to obtain a good solution. This indicates, using

equation (2), that at least � > 1.5 is probably required in

practice. Therefore, we estimate that NCS of order R > 3f is

required in practice to ensure uniqueness in the absence of

any phase information. This corresponds to at least fourfold

NCS for low solvent content crystals, and at least threefold

NCS for crystals with solvent content less than about 30%. In

summary then, rather modest NCS should be sufficient in

principle to ensure a unique solution to the macromolecular

crystallographic phase problem in the absence of any initial

phase information.

3. Context

Here we describe the key concepts of iterative projection

algorithms in the context of current electron-density modifi-

cation algorithms. It is instructive to first briefly review

electron density modification algorithms in protein crystal-

lography. In ‘classical density modification’, these involve, in

summary, calculating an electron-density map using experi-

mentally determined phases, imposing structural constraints

such as solvent boundaries, electron-density histograms and

NCS, transforming the modified map to obtain new phase

estimates, and combining these with the experimental phases

which are then used to calculate a new map, and the cycle

repeated until convergence (Zhang et al., 2006; Cowtan, 2010).

In practice, phase distributions are estimated and centroid

phases are used to calculate maps, and a new phase distribu-

tion is calculated from the modified map and combined with

the experimental phase distribution (by multiplication,

assuming that the two sources of phase information are

independent) to obtain a new phase distribution from which

the centroid phase is calculated for the next iteration. Maps

may be calculated using 2mFo �DFc coefficients based on

an error model (Main, 1979; Read, 1986), or a �-correction

applied to reduce bias (Abrahams, 1997).

Modern macromolecular phasing uses a probabilistic setting

of density modification referred to as ‘statistical density

modification’, which has its roots in maximum-likelihood

approaches to phasing (Bricogne, 1984, 1988; Lunin, 1993;

Xiang et al., 1993). Statistical density modification involves

calculating a likelihood function for the structure factors that

involves two likelihood functions, one for the diffraction

data and one based on characteristics of an expected

macromolecular electron-density map (Terwilliger, 1999,

2000). Probability density functions for the electron density

are developed that incorporate known characteristics of

macromolecular densities (e.g. flat solvent regions, non-

crystallographic symmetry, patterns related to likely

secondary structures etc.). Derivatives of the likelihood with

respect to the structure factors are calculated and a steepest-

ascent method is used to optimize the total likelihood. This

gives a new probability distribution for each phase, from which

a centroid electron-density map is calculated and used in the

next cycle. Statistical density modification can be applied if no

experimental phase information is available by using the map
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likelihood term alone, so-called map-likelihood phasing

(Terwilliger, 2001). This is a potentially powerful approach,

but it still depends on there being sufficient real-space infor-

mation for the solution to be found by a gradient optimization

method, which can still present difficulties. Molecular repla-

cement phases, for example, can be used to provide only the

initial map, and then subsequent cycles performed using only

the map likelihood, and not the initial phases. This so-called

prime-and-switch method (Terwilliger, 2001) reduces model

bias, but reasonably accurate initial phases are still required

for convergence to the correct solution. Although statistical

density modification is one of the most effective methods for

macromolecular phasing, it is still generally most successful

when some experimental phase information (e.g. from

anomalous dispersion or molecular replacement) is available.

The iterative projection algorithms described in this paper are

discussed in the context of classical density modification, and

their potential for supplementing statistical density modifica-

tion are discussed in x6.

We note for completeness the ‘holographic method’ for

phase refinement (Béran & Szöke, 1995; Szöke et al., 1997). In

this scheme, the electron density is expanded in Gaussian basis

functions that represent it at the resolution of the diffraction

data. Real-space (solvent region, partial structures etc.) and

reciprocal-space (diffraction data, isomorphous replacement

data etc.) information is incorporated and the phase problem

reduces to solving an optimization problem for the basis

function coefficients, which is solved by simulated annealing.

This approach can potentially be used to determine the elec-

tron density with minimal experimental phase information if

sufficient real-space constraints (e.g. greater than 50% solvent

content) are available. This approach is distinct from the usual

density-modification approach, however, and is not discussed

further here.

Consider now the application of classical density modifica-

tion in the case where there are no experimental phases

available. Since there are no experimental phases there is no

phase combination step and the essential steps are to adjust

the current map to satisfy the real-space constraints, transform

to reciprocal space, set the structure amplitudes to their

measured values, transform to real space, and iterate until the

map does not change. The other steps outlined above are

attempts to reduce model bias (to the modified map).

However, experience shows that this is not effective with poor

initial phases. The procedure is essentially a local minimiza-

tion, whereas what is required is a global search procedure

that avoids trapping at local minima. The problem can

be treated purely as a constraint satisfaction problem;

the objective being to find an electron density that satisfies

the real-space and reciprocal-space constraints, and not be

trapped at local minima where not all of the constraints are

satisfied. In this setting, the real-space and reciprocal-space

constraints are treated on an equal footing. One (diffraction

amplitudes) is not treated as ‘data’ and the other (real-space

constraints) as a ‘constraint’. Model bias does not arise since

‘bias’ towards the model would be no different to ‘bias’

towards the structure-factor amplitudes.

In classical density modification without bias correction, the

true density is sought by alternately adjusting it to satisfy each

of the constraints. Bricogne (1974) showed these adjustments

are projection operations (this will be formalized below) in a

vector space representing the electron density. If we write the

samples of the electron density as a vector x (also formalized

below), then one iteration, or cycle, of conventional density

modification can be written as the update rule

xnþ1 ¼ PAPB xn; ð3Þ

where xn denotes the electron density at iteration n, PA

denotes the real-space projection operation and PAx means

‘adjust x to satisfy the real-space constraints’, and PB is the

reciprocal-space projection operator and PBx means ‘adjust x

to satisfy the reciprocal-space constraints’. Note that the latter

means ‘take the Fourier transform of the electron density,

adjust the transform such that its amplitudes are equal to the

measured amplitudes, and transform back to real space’.

Equation (3) corresponds to the ‘method of successive

projections’ described by Bricogne (1974).

Now equation (3) is in a sense the ‘obvious’ update rule.

What could be more effective, or simpler, than modifying the

current estimate of the electron density at each step to

conform to the known constraints? If the estimate xn is close

to the correct solution (e.g. if one had good initial phase

estimates) then this update is likely to be effective. However, if

there are no experimental phase estimates, it is likely that one

will start with an estimate x0 that is far from the correct

solution. It is then possible (in fact very likely) that at some

iteration the projection PA will ‘undo’ the projection PB, i.e.

PA = P�1
B , or PA is the inverse of PB. In that case, equation (3)

becomes

xnþ1 ¼ PAPB xn ¼ xn; ð4Þ

and the algorithm ‘stagnates’, or becomes stuck, at the density

xn. A density xn that satisfies equation (4) is called a fixed point

of the algorithm. An important point with the update equation

(3) is that xn can be a fixed point of the algorithm without

being a solution to the problem, i.e. without satisfying both the

real- and reciprocal-space constraints, i.e. equation (4) does

not require that xn = PA xn = PB xn. This is the familiar problem

with density modification when starting with poor initial

phases, of local convergence to an incorrect density. Equation

(3) is a simple example of an iterative projection algorithm.

However, there is a larger class of more sophisticated iterative

projection algorithms that are effective global search proce-

dures for solving large constraint satisfaction problems and

are therefore potentially useful in solving the problem at hand.

Crowther (1969) first described an iterative method,

implemented wholly in reciprocal space, involving projections

to enforce real-space redundancy and the observed structure

amplitudes. Bricogne (1974) described an algorithm imple-

mented in real space, and identified the key steps as projec-

tions, that is the forerunner of modern density-modification

algorithms. It was pointed out by Millane (1990) that density

modification corresponds to the error-reduction algorithm in

the image reconstruction literature, that this algorithm has
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poor global convergence properties, and that the application

of improved projection algorithms such as the hybrid input–

output algorithm (Fienup, 1982) would be likely to be bene-

ficial. Millane & Stroud (1997) and van der Plas & Millane

(2000) extended the hybrid input–output algorithm to incor-

porate NCS constraints and used it to successfully reconstruct

an icosahedral virus with fivefold NCS at 8 Å resolution using

synthetic data with no initial phase information. The intro-

duction of solvent flipping or �-correction (Abrahams, 1997)

(which is shown below to be a form of iterative projection

algorithm) was a significant step in density modification that

increases the radius of convergence. The hybrid input–output

algorithm was applied to phasing X-ray data from single

particles (Miao et al., 1999; Chapman et al., 2006). A projection

algorithm called the ‘difference map algorithm’ (Elser, 2003a)

has been applied ab initio to small-molecule crystallography

(Elser, 2003b), single-particle imaging (Thibault et al., 2006),

determination of molecular envelopes from solvent contrast

variation data (Lo et al., 2009), and virus crystallography (Lo

& Millane, 2010). Most recently, Liu et al. (2012) applied the

hybrid input–output algorithm to a number of proteins with

high (>65%) solvent content. However, there has been little

systematic exploration of the potential of these algorithms in

protein crystallography.

4. Constraint sets and projections

In this section we introduce some mathematical formalisms to

describe constraints and projections. This formalism is kept to

a minimum but is necessary in order to describe iterative

projection algorithms in a clear and concise way.

Consider an electron density that is sampled at N grid

points in the unit cell. The electron density is then represented

by N real numbers that are denoted xj, for j = 1; 2; . . . ;N.

These numbers are collected together in a vector x =

ðx1; x2; . . . ; xNÞ. This vector sits in an N-dimensional Eucli-

dean space, or vector space, denoted RN . A particular electron

density is then represented by a particular vector that corre-

sponds to a single point in this space. The whole space (all

points or all vectors) represents all possible electron-density

functions. The set of all electron densities that satisfy some

constraint therefore corresponds to a set of points in RN , or a

subset of RN, that is called the constraint set.

As will be seen later, a special place is taken by constraint

sets that are convex. A convex set is a set for which the line

segment joining any two points in the set is wholly within the

set, as illustrated in Fig. 1. Formally, a constraint set A is

convex if, for any two points x1; x2 in A, any point x0 = �x1 +

ð1� �Þx2 for which 0 � � � 1, is also in A. A set that is not

convex is called a non-convex set (Fig. 1). Since constraints are

defined as sets, we refer to convex and non-convex constraints.

We now define a projection. The projection of a point x onto

a constraint set A, denoted y = PAx, is the point y 2 A that is

closest to x (in terms of Euclidean distance). A projection can

therefore be defined formally as

y ¼ PAx ¼ argmin
y2A
jjy� xjj; ð5Þ

where jjxjj is the Euclidean norm (or length) of x, i.e. jjxjj =

ð
P

i x2
i Þ

1=2, and argminx f ðxÞ denotes the value of x that mini-

mizes f ðxÞ. Therefore, the projection of an electron density

onto a constraint set involves making the smallest change to

the density such that it satisfies the constraint.

The real-space and reciprocal-space constraint sets are

denoted here by A and B, respectively, so that projections

onto the real-space and reciprocal-space constraints are

denoted PAx and PBx, respectively. Iterative projection

algorithms are generally formulated with two constraint sets,

thus the separation into real-space and reciprocal-space

constraints.

In the following subsections we define some of the simple

constraint sets and projections in protein crystallography.

Some of these will be familiar but are worthwhile recalling in

terms of constraints and projections. We emphasize that any

other constraint and its associated projection can be similarly

defined.

4.1. Real-space constraints

The real-space constraint A is the set of all electron

densities that satisfy the given real-space constraints. These

constraints might include solvent boundaries, NCS, histo-

grams, known fragments or any other structural constraint.

Here we consider only solvent boundary and NCS constraints.

4.1.1. Solvent flatness constraint. The solvent flatness, or

support, constraint refers to knowledge of the molecular

envelope. Depending on the problem at hand, regions outside

the molecular envelope are known to contain solvent or other

disordered material and hence the electron density in these

regions is equal to a fixed constant value, denoted here by �.

The support constraint set, denoted A1, is then the set of all

electron densities that have this constant value outside the

support region, i.e.

A1 ¼ fx : xj ¼ �; 8 j =2 Ug; ð6Þ

where, as previously, U denotes the set of grid points inside the

molecular envelope. Referring to (6), the coordinates j =2 U in

R
N have a fixed value and the other coordinates can take on

any value, so that the set A1 is a jUj-dimensional hyperplane

in RN , where jUj is the number of elements in U. Since a

hyperplane is a convex set, the support constraint is a convex

constraint.

It is easily seen that the minimum change that can be made

to an electron density to satisfy this constraint is to set it equal

to � at the grid points outside the envelope and to leave it
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unchanged at grid points inside the envelope. The projection is

therefore defined by (Bricogne, 1974; Elser, 2003a)

PA1
xj ¼

�
xj if j 2 U;
� if j =2 U:

ð7Þ

If the value � is not known, then the minimum change results

if � is calculated as

� ¼
1

N � jUj

X
j =2 U

xj; ð8Þ

i.e. the average density outside the envelope.

4.1.2. NCS constraint. The NCS constraint expresses the

fact that the electron density is equal at symmetry-related

points. Since symmetry is a geometric concept, it is convenient

to first consider it in real-space coordinates, denoted n, and

then transfer to the vector space RN. Consider first the case of

a continuum (i.e. not sampled) electron density �ðnÞ in the unit

cell. Consider a general NCS of order M that is defined in

the region T (T would usually correspond to the molecular

envelope) by the M symmetery operators Sm for m = 1; . . . ;M,

that map the point n to the M points Smn, with S1 being the

identity operator. The NCS constraint set, denoted A2, is then

the set of all electron densities �ðnÞ that satisfy

�ðnÞ ¼ �ðSmnÞ; 8 m 2 f1; . . . ;Mg; 8 n 2 T: ð9Þ

Consider two densities �1ðnÞ and �2ðnÞ and the density �3ðnÞ
given by

�3ðnÞ ¼ ��1ðnÞ þ ð1� �Þ�2ðnÞ; ð10Þ

with 0 < � < 1. It is easy to show that if �1ðnÞ and �2ðnÞ each

satisfy equation (9), then �3ðnÞ also satisfies (9). Therefore, for

a continuum electron density, by the definition of a convex set,

the NCS constraint is a convex constraint.

In the case at hand, however, the electron density is

sampled. The difficulty here is that if n is a grid point in the

unit cell then Smn will not generally be a grid point so that

�ðSmnÞ is not defined and (9) cannot be used as a definition of

the NCS constraint. In view of this difficulty, we define a

sampled electron density as satisfying the NCS constraint if

the difference between the value at a grid point and the value

at any symmetry-related position, calculated by interpolation

from the values at neighbouring grid points, does not exceed

an upper bound denoted ". Such densities then satisfy

j�ðnÞ � �0ðSmnÞj < "; 8 m 2 f1; . . . ;Mg; 8 n 2 T; ð11Þ

where �0ðSmnÞ denotes the value calculated by interpolation

from a set of grid points in the neighbourhood of Smn, and " is

a small parameter. This definition depends, of course, on the

interpolation scheme used and on ". Consider an interpolation

scheme which is a linear combination of the values at a set of

neighbouring grid points, i.e.

�0ðSmnÞ ¼
P

k

�mk �ðnmkÞ; ð12Þ

where the nmk are the grid points in the neighbourhood of Smn,

indexed by k, and �mk are constants (that will generally

depend on Smn and nmk). Equation (11) then becomes

�ðnÞ �
P

k

�mk �ðnmkÞ

����
���� < "; 8 m 2 f1; . . . ;Mg; 8 n 2 T:

ð13Þ

Now consider the density �3ðnÞ given by (10), where �1ðnÞ and

�2ðnÞ now both satisfy (13). Substitution shows that �3ðnÞ also

satisfies (13), so the NCS constraint for sampled densities

defined by (13) is a convex constraint.

Transforming now to the vector-space formalism, the NCS

constraint set A2 for sampled densities is defined by

A2 ¼ fx : jxj � x0mjj < "; 8 m; 8 j 2 Tg; ð14Þ

for some ", where x0mj denote the values of the interpolated

electron density at the M points symmetry-related to the point

j, and T indexes the grid points in T. From the above, A2 is

convex. It is necessary to include the parameter " for two

reasons. First, for " = 0, for a particular interpolation scheme

A2 may admit only constant densities. Second, a finite " is

needed in order to define a simple and effective projection

onto A2.

Consider now the projection PA2
onto A2. This operation

makes the minimum change to the electron density such that it

satisfies the NCS constraint. It is easily seen that in the

continuum case this corresponds to setting the electron

density at any position to the average value of the density over

the symmetry-related positions (Bricogne, 1974). In the

sampled case, however, this cannot be done directly since the

symmetry-related positions are not grid points, and the density

values at each grid point need to be adjusted such that the

difference between the new values and the interpolated values

at symmetry-related points does not exceed ". However, if the

density at each grid point is set to the average of the inter-

polated values at the symmetry-related points, then the

resulting density satisfies equation (14) with the minimum

possible value of " obtainable in a single step. This is therefore

the optimum choice and the projection is defined by

PA2
xj ¼

ð1=MÞ
PM

m¼ 1

x0mj for j 2 T;

xj for j =2 T:

8<
: ð15Þ

This is seen to correspond to the usual symmetry-averaging

operation applied in conventional density modification. Using

this projection, the value of " does not need to be considered

as it is an automatic outcome related to the grid spacing,

resolution and interpolation scheme used.

4.1.3. Combining real-space constraints and projections.
Application of an iterative projection algorithm requires that

a single real-space constraint A, and a single projection PA, be

derived from the individual constraints, A1 and A2 in this case,

and the individual projections PA1
and PA2

. An electron

density that satisfies both the constraints A1 and A2 must lie in

their intersection, i.e. in the set A = A1 \ A2. In the case at

hand, A1 and A2 are both convex so that their intersection is

convex, and thus the full real-space constraint A is convex.

Also in the case at hand, the operation PA1
changes the values

xj only for j =2 U, and PA2
changes the values xj only for j 2 T,

and U = T, i.e. PA1
and PA2

act on disjoint subsets of RN. It is
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then easily seen that projection onto A is identical to

sequential projections onto A1 and A2. Therefore, the full real-

space projection PA is obtained by composition, i.e.

PAx ¼ PA2
PA1

x: ð16Þ

For other kinds of constraints, it is likely that the individual

projections cannot be rigorously combined into a single

projection. In such cases a pragmatic approach may need to be

taken, which may involve simply using the composition of the

individual projections without concern for the resulting

operation being a projection.

4.2. Reciprocal-space constraint

The reciprocal-space (Fourier-amplitude) constraint set B is

the set of all electron densities whose structure-factor ampli-

tudes are equal to the measured amplitudes, i.e.

B ¼ fx : jF ½x�j ¼ Mg; ð17Þ

where F½� � �� denotes the Fourier transform and M is the

vector of the measured structure-factor amplitudes. If we let ~BB
denote the set of all structure factors whose amplitudes are

equal to the measured amplitudes, then the set B can also be

defined as the set of all electron densities that are the inverse

Fourier transform of the structure factors in ~BB, i.e. B can be

defined as

B ¼ fx : x ¼ F�1
½y�; 8 y 2 ~BBg; ð18Þ

where F�1
½� � �� denotes the inverse Fourier transform. At a

particular reciprocal-lattice point, the set ~BB of all structure

factors with a given amplitude lies on a circle in the complex

plane (Fig. 2). Since the line segment joining any two points on

a circle is not on the circle, the set ~BB at a single reciprocal-

lattice point is non-convex, and, by the distance-preserving

property of the Fourier transform, the set B at a single

reciprocal-lattice point is also non-convex. The constraint set
~BB for all reciprocal-lattice points is the intersection of a set of

hypercylinders, which is non-convex, and so the full constraint

set B is non-convex. The Fourier-amplitude constraint is

therefore a non-convex constraint. This is important as we

shall see in x5.

The reciprocal-space or Fourier-amplitude projection

involves making the minimum change to the electron density

such that it is consistent with the structure-factor amplitude

data. Because the Fourier transform is distance preserving in

R
N , the projection operation can conveniently be applied in

reciprocal space, i.e. the projection can be written in the form

PBx ¼ F�1
½P ~BBF½x��: ð19Þ

The projection P ~BB denotes projection of the structure factors

of x onto ~BB (i.e. moving a point in the complex plane in Fig. 2

to the closest point on the circle), and it is easily seen that this

involves setting the Fourier amplitudes to their measured

values and leaving the phases unchanged, i.e.

P ~BB Xh ¼
sMh expði’½Xh�Þ if h 2 Q;
Xh if h =2 Q;

�
ð20Þ

where Xh denotes the structure factor at reciprocal-lattice

vector h, i.e. F½x� = ðXh1
;Xh2

; . . .Þ, s denotes the scale factor

between the measured and calculated structure-factor ampli-

tudes, ’½� � �� denotes the phase, Mh denotes the measured

structure-factor amplitudes, and Q denotes the set of

reciprocal-lattice points where the data are measured (i.e.

between the minimum and maximum resolutions and

excluding any missing data). Note that in (20), by the notation

PAxj we mean PAx = ðPAx1;PAx2; . . . ;PAxNÞ. Equations (19)

and (20) therefore together define the projection PB, which is

seen to correspond to the simplest reciprocal-space step in

conventional density modification.

5. Iterative projection algorithms

With the above background and definitions, we are now in a

position to look at iterative projection algorithms. An iterative

projection algorithm is an algorithm for finding a point in the

intersection of constraint sets in RN . We consider the case

where there are two constraint sets A and B. The algorithm

generates a sequence of points in RN , denoted xn, beginning

with an, often random, point x0. At each iteration, xn is

updated, using an update rule, to produce xnþ1. The point xn

is referred to as the ‘iterate’. It is important to note that,

although the iterate is used to find the solution to the problem

(a point in A \ B), it is not usually a solution itself. The update

rule is a combination of projections PA and PB applied to xn,

along with xn itself. A particular iterative projection algorithm

is defined by its update rule. In the following subsections, the

more popular and effective iterative projection algorithms are

described as well as their relationships to conventional density

modification.

5.1. Error-reduction algorithm

The simplest iterative projection algorithm is that in which

PA and PB are sequentially applied to xn, i.e. as described in x3

and repeated here,

xnþ1 ¼ PAPBxn: ð21Þ

This algorithm alternately adjusts xn to conform to constraints

A and B. The problem, of course, is that in adjusting the iterate

to conform to the constraint A it is likely to no longer

conform to constraint B. As described in x3, this algorithm

corresponds to conventional electron-density modification,
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Figure 2
The circle shows the Fourier-amplitude constraint set ~BB for a single
structure factor in the complex plane. The constraint set is non-convex.



and the problem is that it can converge to a density that

does not satisfy both the real-space and reciprocal-space

constraints. The algorithm in (21) is commonly referred to

as the ‘error-reduction’ (ER) algorithm in the image-

reconstruction literature (Fienup, 1982). An important prop-

erty of the ER algorithm is that it converges (although

possibly slowly) to a point in A \ B if both the constraint sets

A and B are convex. In this case the ER algorithm is also

known as the ‘projection onto convex sets’ (POCS) algorithm.

However, if one of the constraint sets is non-convex, as is the

case at hand since the reciprocal-space constraint B is non-

convex, then the algorithm will usually stagnate at a non-

solution unless it is started close to the true solution. This is

the key difficulty with this algorithm that makes it unsuitable

in cases where there is little initial phase information available.

5.2. Relaxed-projection algorithm

The next iterative projection algorithm we describe uses

‘relaxed projections’. Unfortunately, two different conven-

tions are used to describe a relaxed projection. The conven-

tion we use here defines a relaxed projection, denoted FAð�Þ,
onto the set A, with a constant parameter � called the

relaxation parameter, by

FAð�Þ x ¼ PAxþ �ðPAx� xÞ: ð22Þ

Inspection of (22) shows that the relaxed projection is

equivalent to taking the regular projection and adding an

additional change to x that is the difference between PAx and

x, scaled by �. This is illustrated in Fig. 3. For � = 0 the relaxed

projection is equivalent to the regular projection, i.e. FAð0Þx =

PAx, for � < 0 the relaxed projection ‘underprojects’ before

PAx, and for � > 0 it ‘overprojects’ beyond PAx. For � = �1,

x remains unchanged, i.e. FAð�1Þx = x. For � = 1, FAð1Þx

projects twice as far as PAx (Fig. 3) and the operator is called a

‘reflector’ and is denoted RA, i.e.

RAx ¼ FAð1Þx ¼ 2PAx� x: ð23Þ

The alternative convention for the relaxed projection is

identical except that the relaxation parameter is replaced by

� = 1 + �, and (22) becomes

FAð�Þx ¼ xþ �ðPAx� xÞ: ð24Þ

The cases � = �1, 0, 1 are equivalent to � = 0, 1, 2. We use the

former definition (using �) in this paper.

The relaxed-projection algorithm replaces the projections

in the ER algorithm [equation (21)] by relaxed projections, i.e.

the update rule for the relaxed-projection algorithm is

xnþ1 ¼ FAð�AÞFBð�BÞxn; ð25Þ

where �A and �B denote the relaxation parameters for the

projections onto the sets A and B, respectively. It can be

shown that for convex constraints the relaxed-projection

algorithm is stable for �1 < � < 1 and is generally unstable if

�A or �B < �1, or �A or �B > 1. The relaxed-projection algo-

rithm tends to speed up convergence relative to the ER

algorithm if 0 < � < 1, particularly for convex constraints.

Acceleration of convergence increases as � approaches 1, but

the algorithm can become unstable (diverge) as � becomes

close to 1. Although convergence can be improved by use of

the relaxed-projection algorithm if it is started near the solu-

tion, in the case of non-convex constraints it is still prone to

stagnation if not started near the solution. It is therefore

potentially useful when one has good initial phase informa-

tion, but not where there is minimal initial phase information.

The trade-off between convergence and stability of the

relaxed projection algorithm can be illustrated as follows.

Using equation (22) shows that equation (25) can be written as

xnþ1 ¼ ð1þ �AÞPAFBxn � �APBxn � �A�BPBxn þ �A�Bxn:

ð26Þ

If now �A and �B are chosen such that �A�B = 1, then (26)

reduces to

xnþ1 ¼ ð1þ �AÞPAFBxn � ð1þ �AÞPBxn þ xn: ð27Þ

If the algorithm reaches a fixed point, i.e. xnþ1 = xn, then (27)

shows that

PAFBxn ¼ PBxn ¼ x�: ð28Þ

Inspection of (28) now shows an interesting property. If the

algorithm reaches a fixed point xn, i.e. converges, then x�

satisfies both constraints A and B [since from (28) it is formed

by both a projection onto A and a projection onto B], and so is

a solution to the problem. This is a highly desirable property

since it allows the solution to be immediately calculated once

the algorithm has converged. There is a difficulty with the

relaxed-projection algorithm however. The requirement

�A�B = 1 requires that either �A � 1 or �B � 1, and in either

case the algorithm is divergent. In practice one needs to use

�A; �B < 1 and this desirable property is not attainable.

However, other iterative projection algorithms have this same

desirable property at their fixed points with weaker diver-

gence problems.

We now show that the technique of �-correction (or solvent

flipping) in conventional electron-density modification

(Abrahams, 1997) is a relaxed projection. (Note the unfortu-

nate use of ‘�’ in this context.) The �-correction is an effective

method for reducing model bias when applied to solvent

levelling. In this case the updated value of the density in the

solvent region �0 is given by (Abrahams, 1997)

�0 ¼ �solv þ kflipð�� �solvÞ; ð29Þ
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The relaxed projection FAx.



where �solv denotes the solvent value, � is the original density

and kflip is a parameter called the flipping factor. Writing (29)

in our terminology gives

xnþ1 ¼ PA1
xn þ kflipðxn � PA1

xnÞ; ð30Þ

and comparison with (22) shows that this is equivalent to a

relaxed projection with relaxation parameter �A1
= �kflip. The

flipping factor often used for solvent levelling is (Abrahams,

1997) kflip = f=ðf � 1Þ, where f is the fraction of the unit cell

containing protein as defined in x2, so that

�A1
¼ f=ð1� f Þ: ð31Þ

(Note that, for even more confusion, f used here is usually

denoted � in the solvent-flipping literature!). For solvent

contents between 25% and 75%, this gives values of �A1

between 3 and 0.33, respectively. The idea here is that smaller

solvent contents represent a weaker constraint and therefore

require more overrelaxation. Note, however, that values �A1
>

1 (kflip < �1) can cause convergence difficulties. The identifi-

cation of �-correction with relaxed projections supports

experience that the former is useful in improving phases, but it

does not introduce a sufficiently increased radius of conver-

gence for the case of very little initial phase information.

An algorithm that is related to solvent flipping is that of

‘charge flipping’ (Oszlányi & Süto��, 2008). This algorithm was

developed for small-molecule crystallography but is discussed

here because of its relationship to projection algorithms and

its similarity to solvent flipping. The algorithm is based on the

constraint that at high resolution much of the unit cell is empty

(zero electron density). The idea is to invert the electron

density in regions where the current estimate is small, to

encourage either small (close to zero) or large values. It is

therefore similar to solvent flipping except that the electron

density is flipped where the value is small (since the positions

of the ‘atomic envelopes’ are unknown), rather than outside

the molecular envelope. The algorithm is effective for small-

molecule crystallography and has also been applied with

success in protein crystallography if high resolution (>1 Å)

data are available (Oszlányi & Süto��, 2008; Dumas & van der

Lee, 2008). The real-space step at each iteration of the charge-

flipping algorithm is given by

ðxnþ1Þj ¼
ðxnÞj for ðxnÞj > �;
�ðxnÞj for ðxnÞj < �;

�
ð32Þ

where � is a threshold and we use the notation ðxÞj = xj.

Inspection of (32) shows that the corresponding constraint set,

denoted C, is

C ¼ fx : xj ¼ 0 or xj > �; 8 j g; ð33Þ

but that the operation (32) is not a combination of projection

operators. Therefore, charge flipping is not strictly a projection

algorithm. Various minor modifications can be made to the

step in equation (32) to make it a combination of projections,

the simplest being to replace it by

ðxnþ1Þj ¼

ðxnÞj for ðxnÞj > �;
2�� ðxnÞj for �=2 < ðxnÞj < �;
�ðxnÞj for ðxnÞj < �=2;

8<
: ð34Þ

which is equivalent to

xnþ1 ¼ RC xn: ð35Þ

This and more sophisticated options (following the ideas

described in the following subsections) may be worthy of

investigation. The full charge-flipping algorithm involves a

number of additional steps in addition to the basic step

described above, in both real space and reciprocal space

(Oszlányi & Süto��, 2008). Note that an ‘atomicity constraint’

and the associated projection defined by Elser (2003b) has a

similar objective to charge flipping.

As alluded to above, desirable properties of an iterative

projection algorithm for reconstruction with little or no initial

phase information are that it explores a large region of the

parameter space RN (since the starting point may be far from

the solution), that it does not stagnate in the vicinity of non-

solutions, and that it converges when it is in the vicinity of

the true solution. A number of more sophisticated iterative

projection algorithms have been developed that have these

general properties. They have been used in a number of areas

of image reconstruction such as in astronomy and coherent

diffraction imaging, but their potential utility in protein crys-

tallography has been little explored. There are a number of

such algorithms in use, but three algorithms that have found

significant application in other areas are the hybrid input–

output algorithm, the difference-map algorithm, and the

relaxed alternating averaged reflection algorithm. These three

algorithms are outlined in the next three subsections.

5.3. Hybrid input–output algorithm

The hybrid input–output (HIO) algorithm is one of the

oldest and most popular algorithms for phase retrieval, and

has found wide use in image reconstruction. It was originally

developed by Fienup (1982) for astronomy, in which the image

is subject to support and positivity constraints. The advantage

of this algorithm is that it is particularly adept at avoiding

stagnation in the presence of the non-convex Fourier ampli-

tude constraint, and with enough iterations will usually

converge to the global solution. Considering here only the

case of a support (solvent level) constraint in real space

[equation (6) with � = 0], the HIO algorithm update rule is

ðxnþ1Þj ¼
ðPBxnÞj for j 2 U;
ðxnÞj � �ðPBxnÞj for j =2 U;

�
ð36Þ

where � is a parameter. Inspection of (36) shows that for grid

points inside the envelope the iterate xn is left unchanged after

the Fourier amplitude constraint has been applied, but outside

the envelope a change is made that is different to setting the

iterate to zero (i.e. to satisfying the constraint). It is this

difference that prevents the algorithm from stagnating at a

non-solution. The value of the parameter � used is variable

but a value � ’ 0.7 is often effective.
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The algorithmic description [equation (36)] is useful for

implementing the algorithm, but is not in the form of a single

update rule [such as equation (21)]. Such a form is not

straightforward to derive, but Bauschke et al. (2003) show that,

for the case of a support constraint, equation (36) can be

written as

xnþ1 ¼ ð1þ �ÞPAPBxn � PAxn � �PBxn þ xn: ð37Þ

Equation (37) is useful for analysis of the algorithm. For

example, at a fixed point of the algorithm, it shows that the

iterate satisfies

PA½xn � ð1þ �ÞPBxn� ¼ PBð�xnÞ ¼ x�: ð38Þ

Inspection of (38) shows that x� satisfies both constraints and

so is a solution to the problem. The algorithm therefore has

the desirable property mentioned above that once it converges

a solution can immediately be found.

The HIO algorithm as described above is suitable only for

constraints, such as support or positivity, for which the

constraint value is zero. Millane & Stroud (1997) extended the

idea of the HIO algorithm to accommodate more general real-

space constraints. For convenience, we refer to this algorithm

here as the generalized HIO (GHIO) algorithm, and (36) is

replaced by (Millane & Stroud, 1997)

ðxnþ1Þj ¼

�
ðPBxnÞj for ðPBxnÞj 2 A;
ðxnÞj þ �½ðPAPBxnÞj � ðPBxnÞj� for ðPBxnÞj =2 A:

ð39Þ

Inspection of (39) shows that the constraint A in this case must

be such that it can be evaluated on a sample-by-sample basis,

independently of the values of the other samples. This means

that the GHIO algorithm can be applied with only a restricted

kind of real-space constraint, although this is not particularly

restrictive in practice and includes, for example, the NCS

constraint (Millane & Stroud, 1997). Millane & Stroud (1997)

also incorporated the idea of a tolerance with which the

constraints need to be satisfied into the GHIO algorithm. This

is an option which removes the requirement for the constraints

to be satisfied exactly. This allows softening of the constraints,

similar to that with statistical density modification. This can

also be easily implemented by putting a margin on the defi-

nition of the constraint sets, and be used, for example, to allow

inexact satisfaction of the NCS or the diffraction amplitude

data. The reader is referred to Millane & Stroud (1997) for

more information. As noted above, an application of the

GHIO algorithm to simulated data from a crystalline icosa-

hedral virus, incorporating support and fivefold NCS

constraints, showed considerable promise (Millane & Stroud,

1997; van der Plas & Millane, 2000).

5.4. Difference-map algorithm

The difference-map (DM) algorithm was developed by

Elser (2003a). (Note that this unfortunate term is unrelated to

the difference Fourier map or to the program DM.) The

algorithm is designed such that the iterate is attracted to fixed

points. The update rule for the DM algorithm uses projections

and relaxed projections, and takes the form (Elser, 2003a)

xnþ1 ¼ xn þ �½PAFBð�BÞxn � PBFAð�AÞxn�; ð40Þ

where �, �A and �B are parameters of the algorithm.

Convergence at the fixed points is optimized if the values

�A ¼ �1=� and �B ¼ 1=� ð41Þ

are used (Elser, 2003a). These values are assumed here and

the algorithm then has a single parameter �. Although � may

need to be optimized empirically, values � ’ 0.7 are usually

effective. Note that � can be negative, which simply corre-

sponds to interchanging the constraints A and B.

If the DM algorithm reaches a fixed point xnþ1 = xn, then

reference to (40) shows that

PAFBxn ¼ PBFAxn ¼ x�; ð42Þ

and x� is a solution to the problem since it satisfies both

constraints A and B. The DM algorithm therefore has the

desirable property described above that the solution can be

obtained immediately once the algorithm has converged to a

fixed point. The DM algorithm has good search properties in

the sense that if the iterate approaches a ‘near-solution’, i.e. a

region of RN where the sets A and B are close but do not

intersect, it will subsequently move away from this region and

continue to explore the parameter space. It is therefore not

prone to stagnation. As noted above, the difference-map

algorithm has been used in a number of crystallographic

applications (Elser, 2003b; Lo et al., 2009; Lo & Millane, 2010).

5.5. Relaxed alternating averaged reflections algorithm

The final iterative projection algorithm we describe is the

relaxed alternating averaged reflections (RAAR) algorithm

(Luke, 2005), which is defined by the update rule

xnþ1 ¼ �nð2PAPBxn � PAxn � xnÞ þ ð1� 2�nÞPBxn: ð43Þ

Note that in (43) the parameter �n is written as a function of

iteration n. Of course the parameters of any iterative projec-

tion algorithm can be changed as the iterations proceed, but

this is particularly useful with the RAAR algorithm as

described below. Algorithmic equations for the RAAR algo-

rithm for the case of support and positivity constraints are

given by Luke (2005). The RAAR algorithm tends to be more

stable near a solution than the HIO algorithm, and good

performance is obtained if �n is started at about 0.7 and

gradually increased towards (but less than) 1 as the iterations

proceed (Luke, 2005). If the RAAR algorithm reaches a fixed

point, then reference to (43) shows that the iterate satisfies

2�nPAPBxn � �nPAxn þ ð1� 2�nÞPBxn ¼ ð1� �nÞxn: ð44Þ

If, now, �n = 1, then (44) reduces to

PAð2PBxn � xnÞ ¼ PBxn ¼ x�; ð45Þ

so that x� is a solution (since it satisfies both constraints).

Therefore, the strategy described above of moving �n towards

unity as the iterations proceed allows the solution to be

calculated at convergence of the algorithm.
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5.6. Error metrics

As described above, it is important to note that the iterate

xn of an iterative projection algorithm is usually not an esti-

mate of the solution. One therefore has to be careful when

calculating error metrics in order to monitor convergence of

these algorithms. It is generally not useful to calculate an error

using the iterate directly. For example, an R factor should not

be calculated in the usual way by comparing the structure-

factor amplitudes of the iterate xn with the amplitude data,

since it is likely that the iterate satisfies neither constraint. A

number of options are available for error metrics. For

example, an R factor can be calculated by comparing the

Fourier amplitude of the iterate after it has been projected

onto the real-space constraints, i.e. as

Rn ¼
kjF½PAxn�j �Mk1

kMk1

; ð46Þ

where M is the vector of the Fourier amplitude data and

k � � � k1 denotes the 1-norm,

kxk1 ¼
P

j

jxjj: ð47Þ

Alternatively, one can calculate an R factor that compares the

Fourier amplitude of an estimate x� of the solution with the

amplitude data, for example for the DM algorithm as

Rn ¼
kjF½PAFBxn�j �Mk1

kMk1

: ð48Þ

Another alternative is to calculate the difference between the

two estimates of x�, which for the DM algorithm is

�n ¼ kPAFBxn � PBFAxnk; ð49Þ

which would equal zero at a solution where the two estimates

coincide. Any of these error metrics is effective in practice.

6. Discussion

Analysis of uniqueness properties of the macromolecular

crystallographic phase problem shows that with a low-

resolution envelope, the positions of any NCS axes, and rather

modest NCS, protein electron densities should be uniquely

defined by their diffraction data alone. Other structural

information will strengthen uniqueness. An NCS constraint set

is formally defined for sampled densities and is shown to be

convex, and the usual electron density averaging is shown to

be the projection onto this constraint set.

Classical density modification is an example of a simple

iterative projection algorithm, but it has poor global conver-

gence for non-convex constraints such as the Fourier ampli-

tude constraint. It is therefore suitable for phase

determination when started with reasonably good experi-

mental phases, but is not effective when little or no initial

phase information is available. Solvent flipping (or �-correc-

tion) is identified as a relaxed projection that improves

convergence, but does not have the global searching abilities

required when little phase information is available. More

sophisticated iterative projection algorithms exist that have

good global convergence properties, and are a viable tool for

phasing in protein crystallography where minimal phase

information is available. Although only the solvent level and

NCS constraints have been discussed in this paper, any real-

space constraint is easily incorporated into these algorithms,

and soft constraints that do not require exact satisfaction of

constraints (e.g. the diffraction data or NCS) are also easily

incorporated.

Statistical density modification puts classical density modi-

fication on a sound statistical footing and has proved to be

effective for macromolecular phasing. However, it still

depends on a gradient-based optimization of the overall

likelihood function (or posterior density) that finds the local

maximum closest to the starting point defined by the aggregate

of the initial experimental and map phases. The more real-

space information that can be included (such as expected

patterns in a macromolecular electron density), the more the

local minima are suppressed, but in many cases there will be

insufficient prior information to produce a likelihood function

with a single global minimum, which would be required for

true ab initio phasing using a gradient-based approach.

Therefore, a potentially useful application of the methods

described in this paper might be to conduct an initial recon-

struction which finds the region of the global maximum, and

then use this as a starting point for statistical density modifi-

cation based on the map-probability function.
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